3x^2+32=139

Simple and best practice solution for 3x^2+32=139 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+32=139 equation:



3x^2+32=139
We move all terms to the left:
3x^2+32-(139)=0
We add all the numbers together, and all the variables
3x^2-107=0
a = 3; b = 0; c = -107;
Δ = b2-4ac
Δ = 02-4·3·(-107)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{321}}{2*3}=\frac{0-2\sqrt{321}}{6} =-\frac{2\sqrt{321}}{6} =-\frac{\sqrt{321}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{321}}{2*3}=\frac{0+2\sqrt{321}}{6} =\frac{2\sqrt{321}}{6} =\frac{\sqrt{321}}{3} $

See similar equations:

| −4b^2−3 | | `6x-22=4x`. | | −4b^2−3 | | −4b^2−3 | | 3x+4=-2+29 | | 12=x=11 | | X-1=4×+-8+3x | | 3^{2x+1}=4^{3x} | | -27=5+32x | | x2+12x–20=8 | | (1/2*2)*(10*x)=180 | | 2t–3=-5 | | 1/2*2*10*x=180 | | b/5-25=-30 | | r/9-22=2 | | 21/25=x/20 | | 32-k/7=36 | | x=2(8/3+4) | | .5x4.5=x | | -3/4x+4=10 | | 4x+6x+4/2=51 | | b/4=29 | | (4x6÷3)-2=3x9x0 | | 5x*5x+5=55 | | 4.6+1.2x=54.6−0.8x | | 12/25=p/20 | | 9+t(12)=−3 | | 1/2(4c+8)+3c-2=4c+2(0.5c+1) | | 5x×5x+5=55 | | 9x+3=90° | | Y=380+15x | | 2.75–7.75(5–2x)=26 |

Equations solver categories